In vitro effect of nerve growth factor on the main traits of rabbit sperm

神经生长因子对兔精子主要性状的体外影响

阅读:5
作者:Cesare Castellini, Simona Mattioli, Alessandro Dal Bosco, Giulia Collodel, Alessandra Pistilli, Anna Maria Stabile, Lara Macchioni, Francesca Mancuso, Giovanni Luca, Mario Rende

Background

The nerve growth factor (NGF), a member of the neurotrophins family, plays an important role not only in the nervous but also in other non-nervous systems such as the reproductive system. The

Conclusion

For the first time, we showed the presence of p75NTR in rabbit sperm. NGF affects kinetic and other physiological traits of rabbit sperm. Most of these changes are modulated by the receptors involved (TrKA or p75NTR). Considering that some seminal disorders in human have been correlated with a lower NGF concentration and no studies have been done on the possible involvement of NGF receptors, these findings also provide new insights on human fertility.

Methods

Ten adult rabbit bucks were collected five times, and pooled semen samples have been analysed. NGF was quantified in seminal plasma, and the distribution of NGF receptors (TrKA and p75NTR) in sperm was established. Moreover, the dose-effect of NGF on motility rate and track speed was evaluated. Successively, the effect of the neutralisation of NGF receptors was assessed to verify the specific role of each receptor. Untreated sperm were used as control.

Results

Our study identified several interesting results: i) We detected NGF in seminal plasma and TrKA and p75NTR in sperm surface. In particular, TrKA is localised in the head and p75NTR in the midpiece and tail of rabbit sperm. ii) Once the optimal dose of NGF (100 ng/mL) was established, its addition affected both kinetics and other physiological traits (capacitation, apoptosis and necrosis) of rabbit sperm. (iii) The neutralisation of TrKA and p75NTR receptors affected sperm traits differently. In particular, sperm speed, apoptosis and capacitation seemed mainly modulated via p75NTR receptor, whereas motile, live cells, necrosis and acrosome reaction were modulated via TrKA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。