GIPC1 CGG Repeat Expansion Is Associated with Movement Disorders

GIPC1 CGG 重复扩增与运动障碍有关

阅读:6
作者:Yu Fan #, Si Shen #, Jing Yang #, Dabao Yao, Mengjie Li, Chengyuan Mao, Yunchao Wang, Xiaoyan Hao, Dongrui Ma, Jiadi Li, Jingjing Shi, Mengnan Guo, Shuangjie Li, Yanpeng Yuan, Fen Liu, Zhihua Yang, Shuo Zhang, Zhengwei Hu, Liyuan Fan, Han Liu, Chan Zhang, Yanlin Wang, Qingzhi Wang, Hong Zheng, Ying

Methods

We screened for the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 in 1,346 movement-disorder patients and 1,451 matched healthy controls.

Objective

CGG/GGC repeat expansion in FMR1 and NOTCH2NLC is reportedly associated with movement disorders; therefore, we hypothesized that the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1, which was previously identified in myopathy, might also be associated with movement-disorder phenotypes. Here, we investigated whether CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 presents in a cohort of patients with movement disorders.

Results

No patients or controls harbored expanded CGG repeats in LRP12 or NUTM2B-AS1, whereas 16 patients harbored >40 CGG repeats in GIPC1, with 11 of these patients harboring >60 CGG repeats. One control individual harbored an expanded GIPC1 allele (83 CGG units), suggesting that approximately 1% of patients affected by movement disorders in our population might harbor GIPC1 CGG repeat expansion, with this likely extremely rare in healthy controls (<0.001). The clinical phenotypes of the GIPC1 CGG repeat-positive patients strongly resembled those in patients displaying NOTCH2NLC GGC repeat-positive movement disorders. Additionally, the GIPC1 CGG repeat-positive patients presented white-matter hyperintensities but without typical NOTCH2NLC-related high-intensity signals in the corticomedullary junction. Furthermore, 44% of the GIPC1 CGG repeat-positive patients showed a cognitive deficit, and skin biopsies in 2 patients revealed deposition of intranuclear inclusions. Interpretation: The CGG repeat expansion in GIPC1 might be associated with movement-disorder phenotypes and lead to diseases related to intranuclear inclusions. ANN NEUROL 2022;91:704-715.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。