Alteration of the lysophosphatidic acid and its precursor lysophosphatidylcholine levels in spinal cord stenosis: A study using a rat cauda equina compression model

脊髓狭窄时溶血磷脂酸及其前体溶血磷脂酰胆碱水平的变化:使用大鼠马尾压缩模型的研究

阅读:5
作者:Baasanjav Uranbileg, Nobuko Ito, Makoto Kurano, Daisuke Saigusa, Ritsumi Saito, Akira Uruno, Kuniyuki Kano, Hitoshi Ikeda, Yoshitsugu Yamada, Masahiko Sumitani, Miho Sekiguchi, Junken Aoki, Yutaka Yatomi

Abstract

Cauda equina compression (CEC) is a major cause of neurogenic claudication and progresses to neuropathic pain (NP). A lipid mediator, lysophosphatidic acid (LPA), is known to induce NP via the LPA1 receptor. To know a possible mechanism of LPA production in neurogenic claudication, we determined the levels of LPA, lysophosphatidylcholine (LPC) and LPA-producing enzyme autotaxin (ATX), in the cerebrospinal fluid (CSF) and spinal cord (SC) using a CEC as a possible model of neurogenic claudication. Using silicon blocks within the lumbar epidural space, we developed a CEC model in rats with motor dysfunction. LPC and LPA levels in the CSF were significantly increased from day 1. Importantly, specific LPA species (16:0, 18:2, 20:4) were upregulated, which have been shown to produce by ATX detected in the CSF, without changes on its level. In SC, the LPC and LPA levels did not change, but mass spectrometry imaging analysis revealed that LPC was present in a region where the silicon blocks were inserted. These results propose a model for LPA production in SC and CSF upon neurogenic claudication that LPC produced locally by tissue damages is converted to LPA by ATX, which then leak out into the CSF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。