An ion-current-based, comprehensive and reproducible proteomic strategy for comparative characterization of the cellular responses to novel anti-cancer agents in a prostate cell model

一种基于离子电流的、全面且可重复的蛋白质组学策略,用于比较表征前列腺细胞模型中细胞对新型抗癌药物的反应

阅读:4
作者:Chengjian Tu #, Jun Li #, Yahao Bu #, David Hangauer, Jun Qu

Abstract

Proteome-level investigation of the molecular targets in anticancer action of promising pharmaceutical candidates is highly desirable but remains challenging due to the insufficient proteome coverage, limited capacity for biological replicates, and largely unregulated false positive biomarker discovery of current methods. This study described a practical platform strategy to address these challenges, using comparison of drug response proteomic signatures by two promising anti-cancer agents (KX01/KX02) as the model system for method development/optimization. Drug-treated samples were efficiently extracted followed by precipitation/on-pellet-digestion procedure that provides high, reproducible peptide recovery. High-resolution separations were performed on a 75-cm-long, heated nano-LC column with a 7-h gradient, with a highly reproducible nano-LC/nanospray configuration. An LTQ Orbitrap hybrid mass spectrometer with a charge overfilling approach to enhance sensitivity was used for detection. Analytical procedures were optimized and well-controlled to achieve high run-to-run reproducibility that permits numerous replicates in one set, and an ion-current-based approach was utilized for quantification. The false positives of biomarker discovery arising from technical variability was controlled based on FBDR measurement by comparing biomarker numbers in each drug-treated group vs. "sham samples", which were analyzed in an order randomly interleaved with the analysis drug-treated samples. More than 1500 unique protein groups were quantified under stringent criteria, and of which about 30% displayed differential expression with FBDR of 0.3-2.1% across groups. Comparison of drug-response proteomic signatures and the subsequent immunoassay revealed that the action mechanisms of KX01/KX02 are similar but significantly different from vinblastine, which correlates well with clinical and pre-clinical observations. Furthermore, the results strongly supported the hypothesis that KX01/KX02 are dual-action agents (through inhibition of tubulin and Src). Moreover, informative insights into the drug-actions on cell cycle, growth/proliferation, and apoptosis were obtained. This platform technology provides extensive evaluation of drug candidates and facilitates in-depth mechanism studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。