Methylphenidate enhances neuronal differentiation and reduces proliferation concomitant to activation of Wnt signal transduction pathways

哌甲酯可增强神经元分化并减少增殖,同时激活 Wnt 信号转导通路

阅读:7
作者:Edna Grünblatt, Jasmin Bartl, Susanne Walitza

Abstract

Methylphenidate (Ritalin) is the most commonly prescribed drug in the treatment of attention-deficit hyperactivity disorder. It is suggested that in vivo, methylphenidate treatment supports cortical maturation, however, the molecular and cellular mechanisms are not well understood. This study aimed to explore the potential effect of methylphenidate on cell proliferation and maturation in various cellular models, hypothesizing its interaction with the Wnt-signaling. The termination of cell proliferation concomitant to neuronal maturation following methylphenidate treatment was observed in all of the cell-models tested: murine neural stem-, rat PC12- and the human SH-SY5Y-cells. Inhibition of Wnt-signaling in SH-SY5Y cells with Dkk1 30 min before methylphenidate treatment suppressed neuronal differentiation but enhanced proliferation. The possible involvement of the dopamine-transporter in cell differentiation was discounted following the observation of opposing results after GBR-12909 treatment. Moreover, Wnt-activation via methylphenidate was confirmed in Wnt-luciferase-reporter assay. These findings reveal a new mechanism of action of methylphenidate that might explain long-term effects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。