Wolfram syndrome 1 and adenylyl cyclase 8 interact at the plasma membrane to regulate insulin production and secretion

Wolfram 综合征 1 和腺苷酸环化酶 8 在质膜上相互作用,调节胰岛素的产生和分泌

阅读:4
作者:Sonya G Fonseca, Fumihiko Urano, Gordon C Weir, Jesper Gromada, Mark Burcin

Abstract

Endoplasmic reticulum (ER) stress causes pancreatic β-cell dysfunction and contributes to β-cell loss and the progression of type 2 diabetes. Wolfram syndrome 1 (WFS1) has been shown to be an important regulator of the ER stress signalling pathway; however, its role in β-cell function remains unclear. Here we provide evidence that WFS1 is essential for glucose- and glucagon-like peptide 1 (GLP-1)-stimulated cyclic AMP production and regulation of insulin biosynthesis and secretion. Stimulation with glucose causes WFS1 translocation from the ER to the plasma membrane, where it forms a complex with adenylyl cyclase 8 (AC8), an essential cAMP-generating enzyme in the β-cell that integrates glucose and GLP-1 signalling. ER stress and mutant WFS1 inhibit complex formation and activation of AC8, reducing cAMP synthesis and insulin secretion. These findings reveal that an ER-stress-related protein has a distinct role outside the ER regulating both insulin biosynthesis and secretion. The reduction of WFS1 protein on the plasma membrane during ER stress is a contributing factor for β-cell dysfunction and progression of type 2 diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。