Data-Modeling Identifies Conflicting Signaling Axes Governing Myoblast Proliferation and Differentiation Responses to Diverse Ligand Stimuli

数据建模识别出控制成肌细胞增殖和分化对不同配体刺激反应的相互冲突的信号轴

阅读:4
作者:Alexander M Loiben, Sharon Soueid-Baumgarten, Ruth F Kopyto, Debadrita Bhattacharya, Joseph C Kim, Benjamin D Cosgrove

Conclusion

This data-modeling approach identified conflicting signaling axes that underlie muscle progenitor cell proliferation and differentiation.

Methods

We treated mouse primary myoblasts in culture with combinations of eight regeneration-associated growth factors and cytokines in mixtures that induced additive, synergistic, and antagonistic effects on myoblast proliferation and differentiation responses. For these combinatorial stimuli, we measured the activation dynamics of seven signal transduction pathways using multiplexed phosphoprotein assays and scored proliferation and differentiation responses based on expression of myogenic commitment factors to assemble a cue-signaling-response data compendium. We interrogated the relationship between these signals and responses by partial least-squares (PLS) regression modeling.

Results

Partial least-squares data-modeling accurately predicted response outcomes in cross-validation on the training compendium (cumulative R 2 = 0.96). The PLS model highlighted signaling axes that distinctly govern myoblast proliferation (MEK-ERK, Stat3) and differentiation (JNK) in response to these combinatorial cues, and we confirmed these signal-response associations with small molecule perturbations. Unexpectedly, we observed that a negative feedback circuit involving the phosphatase DUSP6/MKP-3 auto-regulates MEK-ERK signaling in myoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。