Conclusions
Our data suggest that the anti-apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML-induced MC to overcome resistance to mitochondrial apoptosis.
Methods
Xenograft NSCLC models induced by A549 and A549/Taxol cells were used to evaluate the efficacy of BZML in vivo. The activation of the mitochondrial apoptotic pathway was assessed using JC-1 staining, Annexin V-FITC/PI double-staining, a caspase-9 fluorescence metric assay kit and western blot. The different functional forms of autophagy were distinguished by determining the impact of autophagy inhibition on drug sensitivity.
Results
Our data showed that BZML also exhibited desirable anti-cancer activity against drug-resistant NSCLC in vivo. Moreover, BZML caused ROS generation and MMP loss followed by the release of cytochrome c from mitochondria to cytosol in both A549 and A549/Taxol cells. However, the ROS-mediated apoptotic pathway involving the mitochondria that is induced by BZML was only fully activated in A549 cells but not in A549/Taxol cells. Importantly, we found that autophagy acted as a non-protective type of autophagy during BZML-induced apoptosis in A549 cells, whereas it acted as a type of cytoprotective autophagy against BZML-induced MC in A549/Taxol cells. Conclusions: Our data suggest that the anti-apoptosis property of A549/Taxol cells originates from a defect in activation of the mitochondrial apoptotic pathway, and autophagy inhibitors can potentiate BZML-induced MC to overcome resistance to mitochondrial apoptosis.
