Characterization of striatal phenotypes in heterozygous Disc1 mutant mice, a model of haploinsufficiency

杂合 Disc1 突变小鼠纹状体表型的表征(单倍体不足的模型)

阅读:12
作者:Rathinasamy Baskaran, Chuan-Ching Lai, Wai-Yu Li, Li-Heng Tuan, Chia-Chuan Wang, Lukas J-H Lee, Chih-Min Liu, Hai-Gwo Hwu, Li-Jen Lee

Abstract

Disrupted-in-Schizophrenia 1 (DISC1) is a susceptibility gene for several psychiatric illnesses. To study the pathogenesis of these disorders, we generated Disc1 mutant mice by introducing the 129S6/SvEv 25-bp deletion Disc1 variants into the C57BL/6J strain. In this study, we used heterozygous Disc1 mutant (Het) mice to evaluate the DISC1 haploinsufficiency model of schizophrenia. No changes in locomotor behaviors were observed in Het mice; however, after amphetamine injection, greater locomotor activity was observed in Het mice compared with wild-type (WT) mice. Moreover, amphetamine-induced elevations of c-Fos expression and dopamine level in the striatum were greater in Het mice than in WT controls, suggesting an altered dopaminergic regulation in the striatum of Het mice. Compared with those in WTs, the striatal protein levels of dopamine transporter and D2 dopamine receptor were increased in Het mice, while D1 dopamine receptor level was decreased. DISC1 interacting proteins, GSK3α and GSK3β, were downregulated in Het mice, whereas the levels of PDE4B and CREB were not altered. Morphologically, the complexities of striatal median spiny neurons (MSNs), parvalbumin-positive interneurons and Iba1-positive microglia were all decreased in Het mice. The density and head diameter of dendritic spines in the MSNs of Het mice were also reduced. Our results indicate that mice lacking one WT Disc1 allele are more sensitive to psychostimulant amphetamine challenge, which might be attributed to the altered structure and function of the striatal dopaminergic system. Here, we demonstrated striatal phenotypes in heterozygous Disc1 mutant mice, which could be a promising model of DISC1 haploinsufficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。