Corneal Epithelial Removal with a Newly Designed Epithelial Brush

使用新设计的上皮刷去除角膜上皮

阅读:9
作者:Ho Seok Chung, Seung Hwan Moon, Soon-Suk Kang, Minseop Kim, Hun Lee, Hungwon Tchah, Jae Yong Kim

Abstract

This study aimed to evaluate and compare the effectiveness of a newly developed epithelial removal brush with conventional methods in a rabbit model of corneal epithelial defects. The corneal epithelia of thirty-seven rabbits were removed by three different methods including blades (blade group), newly developed epithelial brushes (Ocu group), and conventional rotating brushes (Amo group). The defect area was measured with light microscopy immediately and at 4, 18, 24, and 50 hours after removal. Corneas were obtained immediately and at 24 and 50 hours and subjected to hematoxylin and eosin (H&E) and immunofluorescence staining using proliferating cell nuclear antigen (PCNA) and phosphorylated heat shock protein 27 (pHSP27) antibodies. The residual stromal surface was observed by scanning electron microscopy (SEM). In the Ocu group, epithelia were significantly recovered at 18, 24, and 50 hours compared with immediately after removal, and in the blade and Amo groups, epithelia were significantly recovered only at 50 hours after epithelial removal. The expression levels of PCNA and pHSP27 did not differ among three groups. There was significantly more inflammatory cell infiltration in the blade group than in the other groups. SEM showed a more regular and uniform residual stromal surface in the Ocu group than in the other groups. The newly developed epithelial brush showed better polishing ability and led to earlier significant epithelial recovery and a more regular and uniform stromal surface than conventional methods in this rabbit model of epithelial defects. Accumulation of clinical data is expected to expand the scope of application of new brushes for laser surface ablation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。