TRPV1 Activation Prevents Renal Ischemia-Reperfusion Injury-Induced Increase in Salt Sensitivity by Suppressing Renal Sympathetic Nerve Activity

TRPV1 激活可抑制肾交感神经活动,防止肾缺血再灌注损伤引起的盐敏感性增加

阅读:6
作者:Shuang-Quan Yu, Shuangtao Ma, Donna H Wang

Background

Salt sensitivity is increased following renal Ischemia-Reperfusion (I/R) injury. We tested the hypothesis that high salt intake induced increase in Renal Sympathetic Nerve Activity (RSNA) after renal I/R can be prevented by activation of Transient Receptor Potential Vanilloid 1 (TRPV1).

Conclusion

These data suggest that TRPV1 activation prevents renal I/R injury-induced increase in salt sensitivity by suppressing RSNA.

Methods

Rats were fed a 0.4% NaCl diet for 5 weeks after renal I/R, followed by a 4% NaCl diet for 4 more weeks in four groups: sham, I/R, I/R +High Dose Capsaicin (HDC), and I/R+Low Dose Capsaicin (LDC). The low (1mg/kg) or high (100mg/kg) dose of capsaicin was injected subcutaneously before I/R to activate or desensitize TRPV1, respectively.

Results

Systolic blood pressure was gradually elevated after fed on a high-salt diet in the I/R and I/R+HDC groups but not in the I/R+LDC group, with a greater increase in the I/R+HDC group. Renal function was impaired in the I/R group and was further deteriorated in the I/R+HDC group but was unchanged in the I/R+LDC group. At the end of high salt treatment, afferent renal nerve activity in response to unilateral intra-pelvic administration of capsaicin was decreased in the I/R group and was further suppressed in the I/R+HDC group but was unchanged in the I/R+LDC group. RSNA in response to intrathecal administration of muscimol, a selective agonist of GABA-A receptors, was augmented in the I/R group and further intensified in the I/R+HDC group but was unchanged in the I/R+LDC group. Similarly, urinary norepinephrine levels were increased in the I/R group and were further elevated in the I/R+HDC group but unchanged in the I/R+LDC group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。