Proteomics study of medullary thyroid carcinomas expressing RET germ-line mutations: identification of new signaling elements

表达 RET 种系突变的甲状腺髓样癌的蛋白质组学研究:鉴定新的信号传导元件

阅读:4
作者:L Gorla, P Mondellini, G Cuccuru, F Miccichè, G Cassinelli, M Cremona, M A Pierotti, C Lanzi, I Bongarzone

Abstract

Proteomics may help to elucidate differential signaling networks underlying the effects of compounds and to identify new therapeutic targets. Using a proteomic-multiplexed analysis of the phosphotyrosine signaling together with antibody-based validation techniques, we identified several candidate molecules for RET (rearranged during transfection) tyrosine kinase receptor carrying mutations responsible for the multiple endocrine neoplasia type 2A and 2B (MEN2A and MEN2B) syndromes in two human medullary thyroid carcinoma (MTC) cell lines, TT and MZ-CRC-1, which express the RET-MEN2A and RET-MEN2B oncoproteins, respectively. Signaling elements downstream of these oncoproteins were identified after treating cells with the indolinone tyrosine kinase inhibitor RPI-1 to knock down RET phosphorylation activity. We detected 23 and 18 affinity-purified phosphotyrosine proteins in untreated TT and MZ-CRC-1 cells, respectively, most of which were shared and sensitive to RPI-1 treatment. However, our data clearly point to specific signaling features of the RET-MEN2A and RET-MEN2B oncogenic pathways. Moreover, the detection of high-level expression of minimally phosphorylated epidermal growth factor receptor (EGFR) in both TT and MZ-CRC-1 cells, together with our data on the effects of EGF stimulation on the proteomic profiles and the response to Gefitinib treatment, suggest the relevance of EGFR signaling in these cell lines, especially since analysis of 14 archival MTC specimens revealed EGFR mRNA expression in all samples. Together, our data suggest that RET/EGFR multi-target inhibitors might be beneficial for therapy of MTC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。