Pleiotrophin inhibited chondrogenic differentiation potential of dental pulp stem cells

多效素抑制牙髓干细胞的软骨分化潜能

阅读:7
作者:Chang Liu, Lili Zhang, Xiaoyu Zheng, Jiaman Zhu, Luyuan Jin, Runtao Gao

Conclusion

Our results suggest that PTN may play an inhibitory role in the chondrogenic differentiation of DPSCs in normal and inflammatory microenvironments, which is regulated by miR-137.

Methods

A lentiviral vector was used to deplete or overexpress PTN in DPSCs. The inflammatory microenvironment was simulated in vitro by the addition of IL-1β to the culture medium. The chondrogenic differentiation potential was assessed using Alcian Blue staining and the main chondrogenic markers. A dual-luciferase reporter assay was used to explore the relationship between miR-137 and PTN.

Objective

Studies have shown that the levels of pleiotrophin (PTN) are greatly elevated in the synovial fluid and cartilage in osteoarthritis. Therefore, the purpose of this study was to investigate the effect and mechanism of PTN on the chondrogenic differentiation of DPSCs in inflammatory and normal microenvironments. Materials and

Results

The results showed that 0.1 ng/mL IL-1β treatment during chondrogenic induction greatly impaired the chondrogenic differentiation of DPSCs. Supplementation with PTN and PTN overexpression inhibited chondrogenic differentiation of DPSCs, while PTN depletion promoted chondrogenic differentiation. MiR-137 negatively regulated the expression of PTN by binding to the 3'UTR of its mRNA. Moreover, miR-137 promoted chondrogenic differentiation of DPSCs in normal and inflammatory microenvironments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。