Exploiting Correlations between Protein Abundance and the Functional Status of saeRS and sarA To Identify Virulence Factors of Potential Importance in the Pathogenesis of Staphylococcus aureus Osteomyelitis

利用蛋白质丰度与 saeRS 和 sarA 功能状态之间的相关性来识别在金黄色葡萄球菌骨髓炎发病机制中具有潜在重要性的毒力因子

阅读:5
作者:Aura M Ramirez, Stephanie D Byrum, Karen E Beenken, Charity Washam, Rick D Edmondson, Samuel G Mackintosh, Horace J Spencer, Alan J Tackett, Mark S Smeltzer

Abstract

We used a murine model of postsurgical osteomyelitis (OM) to evaluate the relative virulence of the Staphylococcus aureus strain LAC and five isogenic variants that differ in the functional status of saeRS and sarA relative to each other. LAC and a variant in which saeRS activity is increased (saeC) were comparably virulent to each other, while ΔsaeRS, ΔsarA, ΔsaeRS/ΔsarA, and saeC/ΔsarA mutants were all attenuated to a comparable degree. Phenotypic comparisons including a mass-based proteomics approach that allowed us to assess the number and abundance of full-length proteins suggested that mutation of saeRS attenuates virulence in our OM model owing primarily to the decreased production of S. aureus virulence factors, while mutation of sarA does so owing to protease-mediated degradation of these same virulence factors. This was confirmed by demonstrating that eliminating protease production restored virulence to a greater extent in a LAC sarA mutant than in the isogenic saeRS mutant. Irrespective of the mechanism involved, mutation of saeRS or sarA was shown to result in reduced accumulation of virulence factors of potential importance. Thus, using our proteomics approach we correlated the abundance of specific proteins with virulence in these six strains and identified 14 proteins that were present in a significantly increased amount (log2 ≥ 5.0) in both virulent strains by comparison to all four attenuated strains. We examined biofilm formation and virulence in our OM model using a LAC mutant unable to produce one of these 14 proteins, specifically staphylocoagulase. The results confirmed that mutation of coa limits biofilm formation and, to a lesser extent, virulence in our OM model, although in both cases the limitation was reduced by comparison to the isogenic sarA mutant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。