Mammalian protein expression noise: scaling principles and the implications for knockdown experiments

哺乳动物蛋白质表达噪声:缩放原理及其对敲除实验的影响

阅读:5
作者:Marc R Birtwistle, Alexander von Kriegsheim, Maciej Dobrzyński, Boris N Kholodenko, Walter Kolch

Abstract

The abundance of a particular protein varies both over time within a single mammalian cell and between cells of a genetically identical population. Here, we investigate the properties of such noisy protein expression in mammalian cells by combining theoretical and experimental approaches. The gamma distribution model is well-known to describe cell-to-cell variability in protein expression in a variety of common scenarios. This model predicts, and experiments show, that when protein levels are manipulated by altering transcription rates or mRNA half-life, protein expression noise, defined as the squared coefficient of variation, is constant. In contrast, we also demonstrate that when protein levels are manipulated by changing protein half-life, as mean levels increase, noise decreases. Thus, in mammalian cells, the scaling relationship between mean protein levels and expression noise depends on how mean levels are perturbed. Therefore it may be important to consider how common experimental manipulations of protein expression affect not only mean levels, but also noise levels. In the context of knockdown experiments, natural cell-to-cell variability in protein expression implies that a particular cell from the knockdown population may have higher protein levels than a cell from the control population. Simulations and experimental data suggest that approximately three-fold knockdown in mean expression levels can reduce such so-called "overlap probability" to less than ~10%. This has implications for the interpretation of knockdown experiments when the readout is a single cell measure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。