KIF15 promotes the development and progression of chordoma via activating PI3K-AKT signalling pathway

KIF15通过激活PI3K-AKT信号通路促进脊索瘤的发生发展

阅读:8
作者:Jinxing Yang, Lijun Liu, Xu Xu, Hui Zeng

Aims

Despite its implication in various human cancers, the expression and functional significance of Kinesin family member 15 (KIF15) in chordomas remain unexplored. Main

Methods

The evaluation of KIF15 protein levels was conducted through immunohistochemistry (IHC) staining and Western blot analysis. Cell proliferation was quantified using MTT and CCK8 assays, whereas cell migration was examined using wound healing and Transwell assays. Furthermore, flow cytometric analysis was utilized to assess cell apoptosis and the cell cycle. Additionally, in vivo experiments were performed using a mouse xenograft model. Key findings: Our study revealed significantly higher expression of KIF15 in stage III chordoma tissues compared to stage II tissues. Knockdown of KIF15 led to notable inhibition of cell proliferation and migration, along with enhanced apoptosis and cell cycle arrest. In vivo studies further confirmed the inhibitory effects of KIF15 knockdown on chordoma tumour growth. In terms of mechanism, we identified the involvement of the PI3K-AKT signalling pathway mediated by KIF15 in chordomas. Notably, the anti-tumour effects of KIF15 deficiency on chordomas were partially reversed by the addition of an AKT activator. Significance: KIF15 promotes chordoma development and progression through the activation of the PI3K-AKT signalling pathway. Thus, targeting KIF15 might be a promising therapeutic strategy for treating chordomas.

Significance

KIF15 promotes chordoma development and progression through the activation of the PI3K-AKT signalling pathway. Thus, targeting KIF15 might be a promising therapeutic strategy for treating chordomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。