Significance
Traumatic brain injury (TBI) is a life-threatening condition characterized by severe brain swelling and is currently treated by a two-stage surgical procedure. Complications associated with the two-stage surgical intervention include the occurrence of the condition termed syndrome of the trephined; however, the condition is completely reversible once the secondary surgery is performed. A desirable TBI treatment would include a single surgical intervention to avoid syndrome of the trephined altogether. The first hurdle in reaching the overall goal is to develop a pliable hydrogel material that can regenerate the patient's bone. The development of a pliable hydrogel technology would greatly impact the field of bone regeneration for TBI application and other areas of bone regeneration.
Statement of significance
Traumatic brain injury (TBI) is a life-threatening condition characterized by severe brain swelling and is currently treated by a two-stage surgical procedure. Complications associated with the two-stage surgical intervention include the occurrence of the condition termed syndrome of the trephined; however, the condition is completely reversible once the secondary surgery is performed. A desirable TBI treatment would include a single surgical intervention to avoid syndrome of the trephined altogether. The first hurdle in reaching the overall goal is to develop a pliable hydrogel material that can regenerate the patient's bone. The development of a pliable hydrogel technology would greatly impact the field of bone regeneration for TBI application and other areas of bone regeneration.
