Study on mechanism of transdermal administration of eugenol for pain treatment by network pharmacology and molecular docking technology

网络药理学与分子对接技术研究丁香酚透皮给药治疗疼痛的作用机制

阅读:5
作者:Haoting Ye, Qiuxiao Lin, Qinghua Mei, Qiuqiong Liu, Siwei Cao

Abstract

The objective of this study was to explore the pharmacological mechanism of transdermal administration of eugenol (EUG) for pain treatment. Firstly, network pharmacology techniques were employed to identify the potential targets responsible for the analgesic effect of EUG. Subsequently, molecular docking technology was used to validate interactions between EUG and the crystal structure of the core target protein. Finally, the impact of EUG on the expression and activation of TRPV1 receptors in HaCaT cells was evaluated through in vitro experiments, thus confirming the analysis of network pharmacology. The study suggested that the transdermal administration of EUG for pain treatment might target the TRPV1 receptor. Molecular docking revealed that EUG could spontaneously bind to the TRPV1 receptor with a high binding ability. The analysis of Western blot (WB) and intracellular Ca2+ levels demonstrated that EUG could increase the expression of TRPV1 in HaCaT cells, activating TRPV1 to induce intracellular Ca2+ influx (P < 0.05). These findings suggested that the initial application of EUG would cause a brief stimulation of TRPV1 receptors and upregulation of TRPV1 expression. Upon continued exposure, EUG would act as a TRPV1 agonist, increasing intracellular Ca2+ levels that might be associated with desensitization of pain sensations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。