Threshold changes in rat brain docosahexaenoic acid incorporation and concentration following graded reductions in dietary alpha-linolenic acid

膳食中 α-亚麻酸逐渐减少后大鼠脑中二十二碳六烯酸的掺入和浓度的阈值变化

阅读:5
作者:Ameer Y Taha, Lisa Chang, Mei Chen

Background

This study tested the dietary level of alpha-linolenic acid (α-LNA, 18:3n-3) required to maintain brain (14)C-Docosahexaenoic acid (DHA, 22:6n-3) metabolism and concentration following graded α-LNA reduction.

Conclusion

Threshold changes for brain DHA metabolism and concentration were maintained at or below 0.9% dietary α-LNA, suggesting the presence of homeostatic mechanisms to maintain brain DHA metabolism when dietary α-LNA intake is low.

Methods

Fischer-344 (CDF) male rat pups (18-21 days old) were randomized to the AIN-93G diet containing as a % of total fatty acids, 4.6% ("n-3 adequate"), 3.6%, 2.7%, 0.9% or 0.2% ("n-3 deficient") α-LNA for 15 weeks. Rats were intravenously infused with (14)C-DHA to steady state for 5 min, serial blood samples collected to obtain plasma, and brains excised following microwave fixation. Labeled and unlabeled DHA concentrations were measured in plasma and brain to calculate the incorporation coefficient, k*, and incorporation rate, J(in).

Results

Compared to 4.6% α-LNA controls, k* was significantly increased in ethanolamine glycerophospholipids in the 0.2% α-LNA group. Circulating unesterified DHA and brain incorporation rates (J(in)) were significantly reduced at 0.2% α-LNA. Brain total lipid and phospholipid DHA concentrations were reduced at or below 0.9% α-LNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。