Age-growth relationships, temperature sensitivity and palaeoclimate-archive potential of the threatened Altiplano cactus Echinopsis atacamensis

濒危高原仙人掌 Echinopsis atacamensis 的年龄-生长关系、温度敏感性和古气候档案潜力

阅读:6
作者:N B English, D L Dettman, Q Hua, J M Mendoza, D Muir, K R Hultine, D G Williams

Abstract

The tall (>4 m), charismatic and threatened columnar cacti, pasacana [Echinopsis atacamensis (Vaupel) Friedrich & G.D. Rowley)], grows on the Bolivian Altiplano and provides environmental and economic value to these extremely cold, arid and high-elevation (~4000 m) ecosystems. Yet very little is known about their growth rates, ages, demography and climate sensitivity. Using radiocarbon in spine dating time series, we quantitatively estimate the growth rate (5.8 and 8.3 cm yr-1) and age of these cacti (up to 430 years). These data and our field measurements yield a survivorship curve that suggests precipitation on the Altiplano is important for this species' recruitment. Our results also reveal a relationship between nighttime temperatures on the Altiplano and the variation in oxygen isotope values in spines (δ18O). The annual δ18O minimums from 58 years of in-series spine tissue from pasacana on the Altiplano provides at least decadal proxy records of temperature (r = 0.58; P < 0.0001), and evidence suggests that there are longer records connecting modern Altiplano temperatures to sea-surface temperatures (SSTs) in the Atlantic Ocean. While the role of Atlantic SSTs on the South American Summer Monsoon (SASM) and precipitation on the Bolivian Altiplano is well described, the impact of SSTs on Altiplano temperatures is disputed. Understanding the modern impact of SSTs on temperature on the Altiplano is important to both understand the impact of future climate change on pasacana cactus and to understand past climate changes on the Altiplano. This is the best quantitative evidence to date of one of the oldest known cactus in the world, although there are likely many older cacti on the Altiplano, or elsewhere, that have not been sampled yet. Together with growth, isotope and age data, this information should lead to better management and conservation outcomes for this threatened species and the Altiplano ecosystem.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。