ETNPPL impairs autophagy through regulation of the ARG2-ROS signaling axis, contributing to palmitic acid-induced hepatic insulin resistance

ETNPPL 通过调节 ARG2-ROS 信号轴来损害自噬,从而导致棕榈酸诱导的肝脏胰岛素抵抗

阅读:6
作者:Caihua Wang, Xiaofang Li, Wei Zhang, Wenxuan Liu, Ziwei Lv, Runlin Gui, Man Li, Yujia Li, Xiaomin Sun, Ping Liu, Xiaobin Fan, Shiyao Yang, Yuyan Xiong, Lu Qian

Abstract

Excessive free fatty acids (FFAs) accumulation is a leading risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine-phosphate phospho-lyase (ETNPPL), a newly identified metabolic enzyme, catalyzes phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde and is highly expressed in hepatic tissue. Whether it plays a role in regulating FFA-induced IR in hepatocytes has yet to be understood. In this study, we established an in vitro palmitic acid (PA)-induced IR model in human HepG2 cells and mouse AML12 cells with chronic treatment of PA. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without PA stimulation. We show that ETNPPL expression is significantly elevated in PA-induced IR and that silencing ETNPPL ameliorates this IR in hepatocytes. Inversely, overexpressing ETNPPL under normal conditions without PA promotes IR, reactive oxygen species generation, and ARG2 activation in both HepG2 and AML12 cells. Moreover, ETNPPL depletion markedly down-regulates ARG2 expression in hepatocytes. Besides, silencing ARG2 prevents ETNPPL-induced ROS accumulation and inhibition of autophagic flux and IR in hepatocytes. Finally, we found that phytopharmaceutical disruption of ETNPPL by quercetin ameliorates PA-induced IR in hepatocytes. Our study discloses that ETNPPL inhibiting autophagic flux mediates insulin resistance triggered by PA in hepatocytes via ARG2/ROS signaling cascade. Our findings provide novel insights into elucidating the pathogenesis of obesity-associated hepatic IR, suggesting that targeting ETNPPL might represent a potential approach for T2DM therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。