PM2.5 induces mitochondrial dysfunction via AHR-mediated cyp1a1 overexpression during zebrafish heart development

PM2.5 在斑马鱼心脏发育过程中通过 AHR 介导的 cyp1a1 过表达诱导线粒体功能障碍

阅读:7
作者:Jin Chen, Mingxuan Zhang, Hongmei Zou, Stanley Aniagu, Yan Jiang, Tao Chen

Abstract

Accumulating evidence suggests an association between maternal PM2.5 exposure and congenital heart diseases, but the underlying mechanisms remain unclear. We previously reported that PM2.5 induces cardiac malformations in zebrafish embryos via the aryl hydrocarbon receptor (AHR) pathway, which mediates the generation of reactive oxygen species (ROS). Since mitochondria are not only the main source of ROS but also sensitive to oxidative damage, we hypothesize that mitochondria may play an important role in the cardiac developmental toxicity of PM2.5. In this study, we demonstrated that extractable organic matter (EOM) from PM2.5 caused mitochondrial dysfunction in the heart of zebrafish embryos, including increased mitochondrial ROS (mtROS) levels, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP) collapse, reduced mitochondrial ATP levels, and decreased expression levels of the mRNAs encoding mitochondrial proteins, which were attenuated by either pharmacological or genetic inhibition of AHR. We further demonstrated that improving mitochondrial function by inhibiting mPTP opening with Cyclosporin A suppressed the EOM-induced intracellular ROS and mtROS generation, MMP collapse, intrinsic apoptosis, and heart defects. Moreover, the EOM-induced mPTP opening was counteracted by inhibiting mtROS with mitoquinone mesylate (MitoQ). Supplementation with MitoQ also attenuated the EOM-induced mitochondrial dysfunction, apoptosis and heart defects. Additionally, knockdown of cyp1a1 but not cyp1b1 attenuated the EOM-induced mtROS generation and heart defects. Taken together, this study indicates that PM2.5 triggers mtROS generation via AHR-mediated cyp1a1 overexpression, which then causes mPTP opening and mitochondrial dysfunction, leading to apoptosis and heart defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。