Prediction of cell cycle distribution after drug exposure by high content imaging analysis using low-toxic DNA staining dye

使用低毒 DNA 染色染料通过高内涵成像分析预测药物暴露后的细胞周期分布

阅读:9
作者:Kazuma Takeuchi, Yumiko Nishimura, Takayoshi Matsubara, Sho Isoyama, Asuka Suzuki, Masaaki Matsuura, Shingo Dan

Abstract

Interference in cell cycle progression has been noted as one of the important properties of anticancer drugs. In this study, we developed the cell cycle prediction model using high-content imaging data of recipient cells after drug exposure and DNA-staining with a low-toxic DNA dye, SiR-DNA. For this purpose, we exploited HeLa and MCF7 cells introduced with a fluorescent ubiquitination-based cell cycle indicator (Fucci). Fucci-expressing cancer cells were subjected to high-content imaging analysis using OperettaCLS after 36-h exposure to anticancer drugs; the nuclei were segmented, and the morphological and intensity properties of each nucleus characterized by SiR-DNA staining were calculated using imaging analysis software, Harmony. For the use of training, we classified cells into each phase of the cell cycle using the Fucci system. Training data (n = 7500) and validation data (n = 2500) were randomly sampled and the binary classification prediction models for G1, early S, and S/G2/M phases of the cell cycle were developed using four supervised machine learning algorithms. We selected random forest as the model with the best performance through 10-fold cross-validation; the accuracy rate was approximately 75%-87%. Regarding feature importance, variables expected to be biologically related to the cell cycle, for example, signal intensity and nuclear size, were highly ranked, suggesting the validity of the model. These results showed that the cell cycle can be predicted in cancer cells by simply exploiting the current prediction model using fluorescent images of DNA-staining dye, and the model could be applied for the use of future ex vivo drug sensitivity diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。