Beclin1‑armed oncolytic Vaccinia virus enhances the therapeutic efficacy of R‑CHOP against lymphoma in vitro and in vivo

Beclin1 携带的溶瘤痘苗病毒在体内和体外增强 R-CHOP 对淋巴瘤的治疗效果

阅读:7
作者:Shufang Xie #, Weimin Fan #, Chen Yang, Wen Lei, Hongying Pan, Xiangmin Tong, Yi Wu, Shibing Wang

Abstract

Non‑Hodgkin lymphoma (NHL) is a form of lymphoid malignancy, with diffuse large B cell lymphoma (DLBCL) being the most common NHL isoform. Approximately half of patients with DLBCL are successfully cured via first‑line Rituximab, Cyclophosphamide, Epirubicin, Vindesine, Prednisolone (R‑CHOP) treatment. However, 30‑40% of patients with DLBCL ultimately suffer from treatment‑refractory or relapsed disease. These patients often suffer from high mortality rates owing to a lack of suitable therapeutic options, and all patients are at a high risk of serious treatment‑associated dose‑dependent toxicity. As such, it is essential to develop novel treatments for NHL that are less toxic and more efficacious. Oncolytic Vaccinia virus (OVV) has shown promise as a means of treating numerous types of cancer. Gene therapy strategies further enhance OVV‑based therapy by improving tumor cell recognition and immune evasion. Beclin1 is an autophagy‑associated gene that, when upregulated, induces excess autophagy and cell death. The present study aimed to develop an OVV‑Beclin1 therapy capable of inducing autophagic tumor cell death. OVV‑Beclin1 was able to efficiently kill NHL cells and to increase the sensitivity of these cells to R‑CHOP, thereby decreasing the dose‑dependent toxic side effects associated with this chemotherapeutic regimen. The combination of OVV‑Beclin1 and R‑CHOP also significantly improved tumor growth inhibition and survival in a BALB/c murine model system owing to the synergistic induction of autophagic cell death. Together, these findings suggest that OVV‑Beclin1 infection can induce significant autophagic cell death in NHL, highlighting this as a novel means of inducing tumor cell death via a mechanism that is distinct from apoptosis and necrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。