Bacteriophage K1F targets Escherichia coli K1 in cerebral endothelial cells and influences the barrier function

噬菌体 K1F 靶向脑内皮细胞中的大肠杆菌 K1 并影响屏障功能

阅读:3
作者:Christian Møller-Olsen, Toby Ross, Keith N Leppard, Veronica Foisor, Corinne Smith, Dimitris K Grammatopoulos, Antonia P Sagona

Abstract

Bacterial neonatal meningitis results in high mortality and morbidity rates for those affected. Although improvements in diagnosis and treatment have led to a decline in mortality rates, morbidity rates have remained relatively unchanged. Bacterial resistance to antibiotics in this clinical setting further underlines the need for developing other technologies, such as phage therapy. We exploited an in vitro phage therapy model for studying bacterial neonatal meningitis based on Escherichia coli (E. coli) EV36, bacteriophage (phage) K1F and human cerebral microvascular endothelial cells (hCMECs). We show that phage K1F is phagocytosed and degraded by constitutive- and PAMP-dependent LC3-assisted phagocytosis and does not induce expression of inflammatory cytokines TNFα, IL-6, IL-8 or IFNβ. Additionally, we observed that phage K1F temporarily decreases the barrier resistance of hCMEC cultures, a property that influences the barrier permeability, which could facilitate the transition of immune cells across the endothelial vessel in vivo. Collectively, we demonstrate that phage K1F can infect intracellular E. coli EV36 within hCMECs without themselves eliciting an inflammatory or defensive response. This study illustrates the potential of phage therapy targeting infections such as bacterial neonatal meningitis and is an important step for the continued development of phage therapy targeting antibiotic-resistant bacterial infections generally.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。