Multiple lines of inhibitory feedback on AKT kinase in Schwann cells lacking TSC1/2 hint at distinct functions of mTORC1 and AKT in nerve development

缺乏 TSC1/2 的雪旺细胞中 AKT 激酶的多种抑制反馈暗示 mTORC1 和 AKT 在神经发育中发挥着不同的作用

阅读:13
作者:Keit Men Wong, Bogdan Beirowski

Abstract

During nerve development, Schwann cells (SCs) build multilayered myelin sheaths around axons to accelerate nerve conduction. The mechanistic target of rapamycin complex 1 (mTORC1) downstream of PI3K/AKT signaling lately emerged as a central anabolic regulator of myelination. Using mutant mice with sustained mTORC1 hyperactivity in developing SCs we recently uncovered that mTORC1 impedes developmental myelination by promoting proliferation of immature SCs while antagonizing SC differentiation. In contrast, mTORC1 stimulates myelin production, rather than SC proliferation, in already differentiated SCs. Importantly, these diametrical mTORC1 functions were unmasked under settings of greatly suppressed AKT signaling. Here we demonstrate, inter alia, additional mechanisms of feedback inhibition of AKT by mTORC1, such as strikingly elevated PTEN levels in SCs with disruption of the mTORC1 inhibitory complex, TSC1/2. These data lead us to propose a model wherein mTORC1 and AKT have distinct roles in developing SCs that have to be precisely coordinated for normal myelinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。