Developmental neuronal origin regulates neocortical map formation

发育神经元起源调节新皮层地图的形成

阅读:8
作者:Yang Lin, Xin-Jun Zhang, Jiajun Yang, Shuo Li, Laura Li, Xiaohui Lv, Jian Ma, Song-Hai Shi

Abstract

Sensory neurons in the neocortex exhibit distinct functional selectivity to constitute the neural map. While neocortical map of the visual cortex in higher mammals is clustered, it displays a striking "salt-and-pepper" pattern in rodents. However, little is known about the origin and basis of the interspersed neocortical map. Here we report that the intricate excitatory neuronal kinship-dependent synaptic connectivity influences precise functional map organization in the mouse primary visual cortex. While sister neurons originating from the same neurogenic radial glial progenitors (RGPs) preferentially develop synapses, cousin neurons derived from amplifying RGPs selectively antagonize horizontal synapse formation. Accordantly, cousin neurons in similar layers exhibit clear functional selectivity differences, contributing to a salt-and-pepper architecture. Removal of clustered protocadherins (cPCDHs), the largest subgroup of the diverse cadherin superfamily, eliminates functional selectivity differences between cousin neurons and alters neocortical map organization. These results suggest that developmental neuronal origin regulates neocortical map formation via cPCDHs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。