Nitrite Improves Heart Regeneration in Zebrafish

亚硝酸盐促进斑马鱼的心脏再生

阅读:3
作者:Elizabeth R Rochon, Maria Azzurra Missinato, Jianmin Xue, Jesús Tejero, Michael Tsang, Mark T Gladwin, Paola Corti

Aims

Nitrite is reduced to nitric oxide (NO) under physiological and pathological hypoxic conditions to modulate angiogenesis and improve ischemia-reperfusion injury. Although adult mammals lack the ability to regenerate the heart after injury, this is preserved in neonates and efforts to reactivate this process are of great interest. Unlike mammals, the adult zebrafish maintain the innate ability to regenerate their hearts after injury, providing an important model to study cardiac regeneration. We thus explored the effects of physiological levels of nitrite on cardiac and fin regeneration and downstream cellular and molecular signaling pathways in response to amputation and cryoinjury.

Conclusion

Physiological and therapeutic levels of nitrite increase thrombocyte, neutrophil, and macrophage recruitment to the heart after amputation and cryoinjury in zebrafish, resulting in accelerated cardiomyocyte proliferation and angiogenesis. Translation of this finding to mammalian models of injury during early development may provide an opportunity to improve outcomes during intrauterine fetal or neonatal cardiac surgery.

Results

Nitrite treatment of zebrafish after ventricular amputation or cryoinjury to the heart in hypoxic water (∼3 parts per million of oxygen) increases cardiomyocyte proliferation, improves angiogenesis, and enhances early recruitment of thrombocytes, macrophages, and neutrophils to the injury. When tested in a fin regeneration model, neutrophil recruitment to the injury site was found to be dependent on NO. Innovation: This is the first study to evaluate effects of physiological levels of nitrite on cardiac regeneration in response to cardiac injury, with the observation that nitrite in water accelerates zebrafish heart regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。