Effect of Nrf2 signaling pathway on the improvement of intestinal epithelial barrier dysfunction by hyperbaric oxygen treatment after spinal cord injury

Nrf2信号通路在脊髓损伤后高压氧治疗改善肠上皮屏障功能中的作用

阅读:10
作者:Xuehua Liu, Fang Liang, Wei Song, Xiaoli Diao, Wanqiu Zhu, Jing Yang

Abstract

Disruption of the intestinal epithelial barrier following spinal cord injury (SCI) seriously affect long-term quality of life. Oxidative stress-induced epithelial cells' injury contributes to the epithelial barrier dysfunction. Hyperbaric oxygen (HBO) treatment has been proved to alleviate SCI. However, it is unclear whether or not HBO treatment affects intestinal barrier function following SCI. In this study, our purpose was to explore the impact of HBO treatment on intestinal epithelial barrier function and underlying mechanisms following SCI. An SCI model was established in rats, and the rats received HBO treatment. Intestinal injury, mucosal permeability, intercellular junction proteins, and oxidative stress indicators were evaluated in our study. We found that HBO treatment significantly alleviated intestinal histological damage, reduced mucosal permeability, and markedly prevented bacterial translocation. Furthermore, HBO treatment significantly increased the expression of Claudin-1 and E-cadherin, inhibited intestinal tissue oxidative stress as demonstrated by upregulation of superoxide dismutase and glutathione, and HBO downregulated malondialdehyde. Mechanically, we demonstrated that HBO treatment ameliorated intestinal oxidative stress possibly through upregulating nuclear factor E2-related factor 2 (Nrf2) and its downstream targets, Heme oxygenase-1(HO-1), NADH-quinone oxidoreductase-1(NQO-1), and glutamate cysteine ligase catalytic subunit (GCLC). These results suggested that HBO treatment triggered antioxidative effects against intestinal epithelial barrier dysfunction by promoting Nrf2 signaling pathway after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。