Oleuropein ameliorated lung ischemia-reperfusion injury by inhibiting TLR4 signaling cascade in alveolar macrophages

橄榄苦苷通过抑制肺泡巨噬细胞中的 TLR4 信号级联改善肺缺血再灌注损伤

阅读:6
作者:Zhe Xu, Xiaonan Sun, Bin Ding, Ming Zi, Yan Ma

Abstract

Lung ischemia-reperfusion (I/R) injury is a common postoperative complication in patients with lung transplantation, pulmonary embolism, and cardiopulmonary bypass. Lung I/R injury is a sterile inflammatory process that leads to lung dysfunction, and is an important cause of patient death. Effectively alleviating lung I/R injury can thus improve the prognosis of patients. In this study, we created a mouse model of lung I/R injury by transient unilateral left pulmonary artery occlusion. 6-8 weeks male C57BL/6 mice were randomly assigned to four groups: Sham, I/R, I/R + oleuropein (OLE) and OLE. OLE (50 mg/kg) was orally 24 h and 30 min before anesthesia. Measurement of lung pathohistological, isolated alveolar macrophages (AMs), inflammatory mediators, TLR4 and its downstream factors (MyD88, NF-κB) were performed. We then evaluated the ability of oleuropein (OLE) to ameliorate I/R-induced lung injury and explored the possible molecular mechanisms. OLE ameliorated I/R-induced lung injury and edema and decreased inflammatory factors in lung tissue and bronchoalveolar lavage fluid. This protection required toll-like receptor 4 (TLR4). OLE significantly inhibited I/R-induced expression of TLR4 and its downstream factors in lung tissue and alveolar macrophages. In addition, hypoxia-inducible factor 1α protein accumulated in TLR4-mediated lung I/R injury, and further induced the production of inflammatory factors. Collectively, these data suggest that OLE ameliorates I/R-induced lung injury. The mechanism responsible for its protective effect may involve inhibition of the I/R-induced inflammatory response by downregulating the TLR4 signaling cascade in AMs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。