Identification and characterisation of novel CAR-T cells to target IL13Rα2 positive human glioma in vitro and in vivo

体外和体内鉴定和表征新型 CAR-T 细胞以靶向 IL13Rα2 阳性人类神经胶质瘤

阅读:11
作者:Pamela Leland #, Heba Degheidy, Ashley Lea, Steven R Bauer, Raj K Puri, Bharat H Joshi

Background

Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB.

Conclusion

Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.

Methods

We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells.

Results

The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。