The Polycomb Protein Bmi1 Plays a Crucial Role in the Prevention of 1,25(OH)2 D Deficiency-Induced Bone Loss

Polycomb 蛋白 Bmi1 在预防 1,25(OH)2 D 缺乏引起的骨质流失中起着至关重要的作用

阅读:7
作者:Haijian Sun, Wanxin Qiao, Min Cui, Cuicui Yang, Rong Wang, David Goltzman, Jianliang Jin, Dengshun Miao

Abstract

We analyzed the skeletal phenotypes of heterozygous null Cyp27b1 (Cyp27b1+/- ) mice and their wild-type (WT) littermates to determine whether haploinsufficiency of Cyp27b1 accelerated bone loss, and to examine potential mechanisms of such loss. We found that serum 1,25-dihydroxyvitamin D [1,25(OH)2 D] levels were significantly decreased in aging Cyp27b1+/- mice, which displayed an osteoporotic phenotype. This was accompanied by a reduction of expression of the B lymphoma Moloney murine leukemia virus (Mo-MLV) insertion region 1 (Bmi1) at both gene and protein levels. Using chromatin immunoprecipitation (ChIP)-PCR, electrophoretic mobility shift assay (EMSA) and a luciferase reporter assay, we then showed that 1,25(OH)2 D3 upregulated Bmi1 expression at a transcriptional level via the vitamin D receptor (VDR). To determine whether Bmi1 overexpression in mesenchymal stem cells (MSCs) could correct bone loss induced by 1,25(OH)2 D deficiency, we overexpressed Bmi1 in MSCs using Prx1-driven Bmi1 transgenic mice (Bmi1Tg ) mice. We then compared the bone phenotypes of Bmi1Tg mice on a Cyp27b1+/- background, with those of Cyp27b1+/- mice and with those of WT mice, all at 8 months of age. We found that overexpression of Bmi1 in MSCs corrected the bone phenotype of Cyp27b1+/- mice by increasing osteoblastic bone formation, reducing osteoclastic bone resorption, increasing bone volume, and increasing bone mineral density. Bmi1 overexpression in MSCs also corrected 1,25(OH)2 D deficiency-induced oxidative stress and DNA damage, and cellular senescence of Cyp27b1+/- mice by reducing levels of reactive oxygen species (ROS), elevating serum total superoxide dismutase levels, reducing the percentage of γH2 A.X, p16, IL-1β, and TNF-α-positive cells and decreasing γH2A.X, p16, p19, p53, p21, IL-1β, and IL-6 expression levels. Furthermore, 1,25(OH)2 D stimulated the osteogenic differentiation of MSCs, both ex vivo and in vitro, from WT mice but not from Bmi1-/- mice and 1,25(OH)2 D administration in vivo increased osteoblastic bone formation in WT, but not in Bmi1 -/- mice. Our results indicate that Bmi1, a key downstream target of 1,25(OH)2 D, plays a crucial role in preventing bone loss induced by 1,25(OH)2 D deficiency. © 2019 American Society for Bone and Mineral Research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。