GoSAMT s are required for pectin methyl-esterification and mucilage release in seed coat epidermal cells

GoSAMT 是种皮表皮细胞中果胶甲酯化和粘液释放所必需的

阅读:8
作者:Juan Pablo Parra-Rojas, Pablo Sepúlveda-Orellana, Dayan Sanhueza, Hernán Salinas-Grenet, Henry Temple, Paul Dupree, Susana Saez-Aguayo, Ariel Orellana

Discussion

The results show that the HG synthesized in gosamt mutant plants is less methyl esterified, resulting in more egg-box structures, which stiffen the cell walls in epidermal cells and change the rheological properties of the seed surface. The increased amounts of arabinose and arabinogalactan-protein in adherent mucilage, also suggests that compensation mechanisms were triggered in the gosamt mutants.

Methods

To determine the function of GoSAMT1 and GoSAMT2 in HG methyl-esterification we utilized epidermal cells of seed coats, as these structures produce mucilage, which is a pectic matrix. We evaluated differences in seed surface morphology and quantified mucilage release. We measured methanol release, and used antibodies and confocal microscopy to analyze HG methyl-esterification in mucilage.

Results

We observed morphological differences on the seed surface and delayed, uneven mucilage release in gosamt1-1gosamt2-1 double mutants. We also found changes in the distal wall length indicating abnormal cell wall breakage in this double mutant. Using methanol release and immunolabeling, we confirmed that GoSAMT1 and GoSAMT2 are involved in HG methyl-esterification in mucilage. However, we did not find evidence of decreasing HG in the gosamt mutants. Confocal microscopy analyses detected different patterns in the adherent mucilage and a greater number of low-methyl-esterified domains near the seed coat surface, which correlates with a greater number of "egg-box" structures in this region. We also detected a shift in the partitioning between the Rhamnogalacturonan-I soluble and adherent layers of the double mutant, which correlated with increased amounts of arabinose and arabinogalactan-protein in the adherent mucilage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。