The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in rats with ligated femoral arteries

机械门控通道抑制剂 GsMTx4 可降低股动脉结扎大鼠的运动加压反射

阅读:5
作者:Steven W Copp, Joyce S Kim, Victor Ruiz-Velasco, Marc P Kaufman

Abstract

Mechanical and metabolic stimuli arising from contracting muscles evoke the exercise pressor reflex. This reflex is greater in a rat model of simulated peripheral arterial disease in which a femoral artery is chronically ligated than it is in rats with freely perfused femoral arteries. The role played by the mechanically sensitive component of the exaggerated exercise pressor reflex in ligated rats is unknown. We tested the hypothesis that the mechano-gated channel inhibitor GsMTx4, a relatively selective inhibitor of mechano-gated Piezo channels, reduces the exercise pressor reflex in decerebrate rats with ligated femoral arteries. Injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced the pressor response to Achilles tendon stretch (a purely mechanical stimulus) but had no effect on the pressor responses to intra-arterial injection of α,β-methylene ATP or lactic acid (purely metabolic stimuli). Moreover, injection of 10 μg of GsMTx4 into the arterial supply of the hindlimb reduced both the integrated pressor area (control 535 ± 21, GsMTx4 218 ± 24 mmHg·s; P < 0.01), peak pressor (control 29 ± 2, GsMTx4 14 ± 3 mmHg; P < 0.01), and renal sympathetic nerve responses to electrically induced intermittent hindlimb muscle contraction (a mixed mechanical and metabolic stimulus). The reduction of the integrated pressor area during contraction caused by GsMTx4 was greater in rats with ligated femoral arteries than it was in rats with freely perfused femoral arteries. We conclude that the mechanically sensitive component of the reflex contributes to the exaggerated exercise pressor reflex during intermittent hindlimb muscle contractions in rats with ligated femoral arteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。