Astrocytic purinergic signalling contributes to the development and maintenance of neuropathic pain via modulation of glutamate release

星形胶质细胞嘌呤能信号通过调节谷氨酸释放促进神经性疼痛的发展和维持

阅读:5
作者:Suting Liu, Hao Cheng, Liying Cui, Li Jin, Yunzi Li, Chao Zhu, Qing Ji, Jun Tang

Abstract

Although activation of astrocytes is critical in developing neuropathic pain (NP) following nerve injury, the underlying mechanisms of NP and therapeutic management for NP are still vague. Importantly, the decreases in the levels of astrocytic glutamate transporter-1 (GLT-1) in the spinal dorsal horn result in enhanced excitatory transmission and cause persistent pain. P2Y1 purinergic receptor (P2Y1R) has been shown to enhance many inflammatory processes. The up-regulated expression of astrocytic P2Y1R is crucial to participate in pain transduction under conditions of nerve injury and peripheral inflammation considering that P2Y1R is potentially involved in glutamate release and synaptic transmission. This study indicates that the expression of P2Y1R in the spinal cord was increased accompanied by the activation of A1 phenotype astrocytes in the rat model of spinal nerve ligation (SNL). Astrocyte-specific knockdown of P2Y1R alleviated SNL-induced nociceptive responses and mitigated A1 reactive astrocytes, which subsequently increased GLT-1 expression. Conversely, in naïve rats, P2Y1R over-expression induced a canonical NP-like phenotype and spontaneous hypernociceptive responses and increased the concentration of glutamate in the spinal dorsal horn. Besides, our in vitro data showed that the proinflammatory cytokine tumour necrosis factor-alpha contributes to A1/A2 astrocyte reactivity and Ca2+ -dependent release of glutamate. Conclusively, our results provide novel insights that as a significant regulator of astrocytic A1/A2 polarization and neuroinflammation, P2Y1R may represent a potential target for the treatment of SNL-induced NP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。