Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate ageing in mice

非编码RNA Terc-53和透明质酸受体Hmmr调节小鼠衰老

阅读:6
作者:Sipeng Wu, Yiqi Cai, Lixiao Zhang, Xiang Li, Xu Liu, Guangkeng Zhou, Hongdi Luo, Renjian Li, Yujia Huo, Zhirong Zhang, Siyi Chen, Jinliang Huang, Jiahao Shi, Shanwei Ding, Zhe Sun, Zizhuo Zhou, Pengcheng Wang, Geng Wang

Abstract

One of the basic questions in the ageing field is whether there is fundamental difference between the ageing of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-ageing Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at early age was observed, indicating its involvement in normal ageing of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal ageing. AAV-delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan (Stern 2017). These findings demonstrate the complexity of ageing in mammals, and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。