Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines

在无血清 3i 培养条件下保持猪多能干细胞的自我更新,并且不依赖于 LIF 和 b-FGF 细胞因子

阅读:5
作者:Yangyang Ma #, Tong Yu #, Yuanxing Cai, Huayan Wang

Abstract

Derivation of bona fide porcine pluripotent stem cells is still a critical issue because porcine embryonic stem cells (ESCs) are not available yet, and most of the culture conditions to maintain porcine induced pluripotent stem cells (piPSCs) are based on conditions for mouse and human iPS cells. In this study, we generated a doxycycline-inducible porcine iPS cell line (DOX-iPSCs) and used it to screen the optimal culture condition to sustain the self-renewal of piPSCs. We found that LIF and b-FGF were required for porcine cell reprogramming, but were not essential cytokines for maintaining the self-renewal and pluripotency of piPSCs. A serum-free 3i medium, which includes three inhibitors CHIR99021, SB431542, and PD0325901, three cytokines BMP4, SCF, and IL-6, and human platelet lysates (PL), was made through serious selections. In 3i condition, the doxycycline-inducible iPSCs could be passaged for a long term without the addition of doxycycline, and the flattened morphology of intermediate state piPSCs could convert to the naïve-like morphology with the increase in endogenous pluripotent gene expressions. Additionally, pPSC cell line isolated from 5.5 days blastocysts could be sustained in 3i medium and the expression of endogenous pluripotent genes OCT4, ESRRB, and STELLA was significantly increased. Our finding directed a new reprogramming strategy by using 3i condition to maintain and convert primed piPSCs into naïve-like pluripotent state. A combination of traditional LIF/b-FGF conditions and 3i condition may help us to find out an appropriate reprogramming approach to generate the naïve state of porcine iPSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。