Aim of the study
The aim of the study was to investigate in more detail the anti-inflammatory properties of O. fragrans flowers, and to characterize their active principles and mechanisms of action. Materials and
Conclusion
Taken together, the results demonstrate the anti-inflammatory potential of O. fragrans flower extracts in general, and of the glycolipid-enriched fraction in particular. The effects of glycolipid-enriched fraction are potentially mediated via the inhibition of the TLR4 receptor complex.
Methods
O. fragrans flowers were successively extracted with n-hexane, dichloromethane and methanol. The extracts were further fractionated by chromatographic separation. COX-2 mRNA expression in PMA-differentiated, LPS-stimulated THP-1 cells was used as lead assay for activity-guided fractionation. The most potent fraction was chemically analyzed by LC-HRMS. The pharmacological activity was also evaluated in other inflammation-related in-vitro models, such as analysis of IL-8 secretion and E-selectin expression in HUVECtert cells and selective inhibition of COX-isoenzymes.
Results
n-Hexane and dichloromethane extracts of O. fragrans flowers significantly inhibited COX-2 (PTGS2) mRNA expression. Additionally, both extracts inhibited COX-2 enzyme activity, whereas COX-1 enzyme activity was affected to a significantly lower extent. Fractionation of the extracts led to a highly active, glycolipid-containing fraction. In total, 10 glycolipids were tentatively annotated by LC-HRMS. This fraction also inhibited LPS-induced COX-2 mRNA expression, IL-8 secretion and E-selectin expression. The effects were limited to LPS-induced inflammation and not observed when inflammatory genes were induced by TNF-α, IL-1β or FSL-1. Since all these inducers of inflammation act via different receptors, it is likely that the fraction interferes with the binding of LPS to the TLR4-receptor, which mediates pro-inflammatory effects of LPS.
