Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway

红景天苷通过调节铁死亡依赖性途径抑制阿霉素诱发的心肌病

阅读:5
作者:Hang Chen, Ji Zhu, Yifei Le, Jieli Pan, Ying Liu, Zhijun Liu, Cui Wang, Xiaobing Dou, Dezhao Lu

Background

Doxorubicin-induced cardiotoxicity (DIC) limits the clinical application of the drug in treatment of cancers and imposes a severe health burden on the patients. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize DIC. Salidroside is a phenylpropanoid glycoside extracted from Rhodiola rosea with multiple biological effects such as anti-inflammation and antioxidant properties. However, its mechanism of action in DIC is still poorly understood.

Conclusions

The present study evidently demonstrated the cardioprotective effects of salidroside against doxorubicin-induced cardiomyopathy. Further, salidroside markedly down-regulated ferroptotic cell death by activating AMPK-dependent signaling pathways including regulating abnormal fatty acid metabolism and maintaining mitochondrial function. Therefore, salidroside is can be exploited to develop a novel medication for clinical DIC and salidroside may represent a novel treatment that improves recovery from DIC by targeting ferroptosis.

Methods

Cardiac dysfunction was induced through treatment of mice with doxorubicin in vivo and in vitro. The mechanism of action of salidroside was investigated using western blot assay, qPCR, immunofluorescence, histochemistry, echocardiography, and high-content imaging system.

Purpose

The present study was aimed to investigate the role of salidroside in DIC and associated mechanism of action for the described effects.

Results

Results of the current study found that treatment of mice with salidroside significantly improved doxorubicin-induced cardiac dysfunction, ferroptosis-like cell damage, and fibrosis in vivo. Further, it was noted that salidroside inhibited ferroptosis in vivo and in vitro by limiting iron accumulation, restoring GPX4-dependent antioxidant capacity, and preventing lipid peroxidation at the cellular or mitochondrial levels. Mechanistically, salidroside inhibited DOX-induced mitochondrial ROS, Fe2+, and lipid peroxidation as well as restored mitochondrial membrane potential by promoting mitochondrial biogenesis, improving mitochondrial iron-sulfur clusters, and restoring mitochondrial OXPHOS complexes, thereby improving mitochondrial function. In addition, AMPK is a key protein that coordinates mitochondria, metabolism, and ferroptosis. Therefore, it was found that compound C (CC), an AMPK inhibitor, disrupted the regulation of cellular lipid metabolism and mitochondrial function of salidroside as well as led to failure of the protective effect of salidroside against ferroptotic cell death. Conclusions: The present study evidently demonstrated the cardioprotective effects of salidroside against doxorubicin-induced cardiomyopathy. Further, salidroside markedly down-regulated ferroptotic cell death by activating AMPK-dependent signaling pathways including regulating abnormal fatty acid metabolism and maintaining mitochondrial function. Therefore, salidroside is can be exploited to develop a novel medication for clinical DIC and salidroside may represent a novel treatment that improves recovery from DIC by targeting ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。