DRGquant: A new modular AI-based pipeline for 3D analysis of the DRG

DRGquant:一种基于人工智能的模块化三维背根神经节分析流程。

阅读:4
作者:Matthew A Hunt ,Harald Lund ,Lauriane Delay ,Gilson Goncalves Dos Santos ,Albert Pham ,Zerina Kurtovic ,Aditya Telang ,Adam Lee ,Akhil Parvathaneni ,Emily Kussick ,Maripat Corr ,Tony L Yaksh

Abstract

Background: The dorsal root ganglion (DRG) is structurally complex and pivotal to systems processing nociception. Whole mount analysis allows examination of intricate microarchitectural and cellular relationships of the DRG in three-dimensional (3D) space. New method: We present DRGquant a set of tools and techniques optimized as a pipeline for automated image analysis and reconstruction of cells/structures within the DRG. We have developed an open source software pipeline that utilizes machine learning to identify substructures within the DRG and reliably classify and quantify them. Results: Our methods were sufficiently sensitive to isolate, analyze, and classify individual DRG substructures including macrophages. The activation of macrophages was visualized and quantified in the DRG following intrathecal injection of lipopolysaccharide, and in a model of chemotherapy induced peripheral neuropathy. The percent volume of infiltrating macrophages was similar to a commercial source in quantification. Circulating fluorescent dextran was visualized within DRG macrophages using whole mount preparations, which enabled 3D reconstruction of the DRG and DRGquant demonstrated subcellular spatial resolution within individual macrophages. Comparison with existing method(s): Here we describe a reliable and efficient methodologic pipeline to prepare cleared and whole mount DRG tissue. DRGquant allows automated image analysis without tedious manual gating to reduce bias. The quantitation of DRG macrophages was superior to commercial solutions. Conclusions: Using machine learning to separate signal from noise and identify individual cells, DRGquant enabled us to isolate individual structures or areas of interest within the DRG for a more granular and fine-tuned analysis. Using these 3D techniques, we are better able to appreciate the biology of the DRG under experimental inflammatory conditions. Keywords: Artificial intelligence; Dorsal root ganglion; Macrophage; Three dimensional (3D) analysis; Whole mount.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。