Role of the EZH2/miR-200 axis in STAT3-mediated OSCC invasion

EZH2/miR-200 轴在 STAT3 介导的 OSCC 侵袭中的作用

阅读:6
作者:Yu Wang, Wenyu Guo, Zhaoqing Li, Yansheng Wu, Chao Jing, Yu Ren, Minghui Zhao, Lingping Kong, Chao Zhang, Jiabin Dong, Yu Shuang, Shanshan Sun, Jinliang Chen, Chuanqiang Wu, Yu Qiao, Xin Qu, Xudong Wang, Lun Zhang, Rui Jin, Xuan Zhou

Abstract

Abnormal activation of signal transducer and activator of transcription 3 (STAT3) serves a pivotal role in oral squamous cell carcinoma (OSCC) tumor cell invasion into normal tissues or distant organs. However the downstream regulatory network of STAT3 signaling remains unclear. The present study aimed to investigate the potential mechanism underlying how STAT3 triggers enhancer of zeste homolog 2 (EZH2) expression and inhibits microRNA (miR)-200a/b/429 expression in SCC25 and SCC15 cells in vitro and in vivo. Western blotting and reverse transcription-quantitative polymerase chain reaction were performed to detect expression, and numerous functional tests were conducted to explore cancer metastasis. The results indicated that when STAT3 signaling activity was attenuated by Stattic or enhanced with a STAT3 plasmid, the EZH2/miR-200 axis was markedly altered, thus resulting in modulation of the invasion and migration of OSCC cell lines. In addition, loss of function of EZH2 compromised the oncogenic role of STAT3 in both cell lines. F-actin morphology and the expression of epithelial-mesenchymal transition markers were also altered following disruption of the STAT3/EZH2/miR-200 axis. An orthotopic tumor model derived from SCC15 cells was used to confirm that targeting STAT3 or EZH2 suppressed OSCC invasion in vivo. In conclusion, the EZH2/miR-200 axis was revealed to mediate antitumor effects by targeting STAT3 signaling; these findings may provide a novel therapeutic strategy for the treatment of OSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。