Dihydroquercetin alleviates dopamine neuron loss via regulating TREM2 activation

二氢槲皮素通过调节 TREM2 激活减轻多巴胺神经元丢失

阅读:6
作者:Rong Yang, Dai-di Li, Xiao-Xian Li, Xin-Xing Yang, Hui-Ming Gao, Feng Zhang

Background

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, marked by the degeneration of dopamine (DA) neurons in the substantia nigra (SN). Current evidence strongly suggests that neuroinflammation, primarily mediated by microglia, contributes to PD pathogenesis. Triggering receptor expressed on myeloid cells 2 (TREM2) might serve as a promising therapeutic target for PD due to its ability to suppress neuroinflammation. Dihydroquercetin (DHQ) is an important natural dihydroflavone and confers apparent anti-inflammatory, antioxidant and anti-fibrotic effects. Recently, DHQ-mediated neuroprotection was exhibited. However, the specific mechanisms of its neuroprotective effects remain incompletely elucidated.

Conclusions

These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.

Methods

In this study, rat models were utilized to induce damage to DA neurons using lipopolysaccharide (LPS) and 6-hydroxydopamine (6-OHDA) to assess the impacts of DHQ on the loss of DA neurons. Furthermore, DA neuronal MN9D cells and microglial BV2 cells were employed to investigate the function of TREM2 in DHQ-mediated DA neuroprotection. Finally, TREM2 knockout mice were used to investigate whether the neuroprotective effects mediated by DHQ through a mechanism dependent on TREM2.

Results

The main findings demonstrated that DHQ effectively protected DA neurons against neurotoxicity induced by LPS and 6-OHDA and inhibited microglia-elicited neuroinflammation. Meanwhile, DHQ promoted microglial TREM2 signaling activation. Notably, DHQ failed to reduce inflammatory cytokines release and further present neuroprotection from DA neurotoxicity upon TREM2 silencing. Similarly, DHQ didn't exert DA neuroprotection in TREM2 knockout mice. Conclusions: These findings suggest that DHQ exerted DA neuroprotection by regulating microglia TREM2 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。