Structure characterization and intestinal immune promotion effect of polysaccharide purified from Alhagi camelorum Fisch

骆驼刺多糖纯化的结构表征及促进肠道免疫作用

阅读:5
作者:Zulikeyan Manafu, Ronglijiao Du, Tuerhong Kudereti, Gulimire Abulikemu, Shakeel Ahmed Lakho, Lijun Xue, Ayibike Bierdelieke, Faiz Muhammad Khand, Ambreen Leghari, Yuan Xie, Saifuding Abula, Bateer Bake, Qingyong Guo, Adelijiang Wusiman

Abstract

This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 → 4)-α-GalpA-(1 → and →4)-α-D-GalpA-6-OMe-(1 → 2)-α-L-Rhap-(1→, as well as →4)-β-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。