Transcription factor networks in invasion-promoting breast carcinoma-associated fibroblasts

促进侵袭的乳腺癌相关成纤维细胞中的转录因子网络

阅读:10
作者:A Siletz, E Kniazeva, J S Jeruss, L D Shea

Abstract

Carcinoma-associated fibroblasts (CAFs) contribute to both tumor growth and cancer progression. In this report, we applied an emerging transcription factor (TF) activity array to fibroblasts to capture the activity of the intracellular signaling network and to define a signature that distinguishes mammary CAFs from normal mammary fibroblasts. Normal fibroblasts that restrained cancer cell invasion developed into an invasion-promoting CAF phenotype through exposure to conditioned medium from MDA-MB-231 breast cancer cells. A myofibroblast-like CAF cell line expressing high levels of smooth muscle actin was compared to normal mammary fibroblasts before and after induction. Comparison of TF activity profiles for all three fibroblast types identified a TF activity signature common to CAFs which included activation of reporters for TFs ELK1, GATA1, retinoic acid receptor (RAR), serum response factor (SRF), and vitamin D receptor (VDR). Additionally, CAFs resembling myofibroblasts, relative to normal fibroblasts, had elevated activation corresponding to NF-kappaB, RUNX2, and YY1, and distinct activity patterns for several differentiation-related TF reporters. Induction of CAFs by exposure of normal fibroblasts to conditioned medium from MDA-MB-231 cells resulted in increased activation of reporters for HIF1, several STAT TFs, and proliferation-related TFs such as AP1. Myofibroblast-like CAFs and induced normal mammary fibroblasts promoted invasion of breast cancer cells by distinct mechanisms, consistent with their distinct patterns of TF activation. The TF activity profiles of CAF subtypes provide an overview of intracellular signaling associated with the induction of a pro-invasive stroma, and provide a mechanistic link between the microenvironmental stimuli and phenotypic response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。