Exogenous H2S Ameliorates High Salt-Induced Hypertension by Alleviating Oxidative Stress and Inflammation in the Paraventricular Nucleus in Dahl S Rats

外源性 H2S 通过减轻 Dahl S 大鼠室旁核的氧化应激和炎症改善高盐诱导的高血压

阅读:5
作者:Yingying Liao #, Yuanyuan Fan #, Qinglin He, Yuwei Li, Dongdong Wu, Enshe Jiang

Abstract

Hydrogen sulfide (H2S) is an important gaseous signaling molecule that regulates cardiovascular activity in animals. The hypothalamic paraventricular nucleus (PVN) is a major integrative region involved in blood pressure (BP) regulation. We explored whether exogenous H2S application by intraperitoneal injection of sodium hydrosulfide (NaHS) alleviates BP increase induced by a high salt diet (HSD) and the role of PVN in Dahl salt-sensitive (Dahl S) rats. Dahl S rats were divided into four groups according to diet regime (normal salt diet [NSD] and HSD) and treatment method (daily intraperitoneal NaHS or saline injection). We monitored BP, food and water intake, and body weight for 8 weeks. Plasma, kidney, and brain tissues were collected at the end of the experiment. We found that exogenous H2S not only delayed BP elevation but also attenuated the increase in the levels of norepinephrine, cystatin C, and blood urea nitrogen in the plasma of Dahl S rats with an HSD. Furthermore, H2S enhanced the total antioxidant capacity, superoxide dismutase, and glutathione peroxidase in the PVN. Exogenous H2S attenuated the protein expression of the nuclear factor-κB pathway and proinflammatory cytokines, which were significantly higher in the PVN in rats with an HSD than in rats with an NSD. Additionally, exogenous H2S relieved PVN neuronal apoptosis induced by an HSD. These findings suggest that exogenous H2S attenuates hypertension caused by an HSD by ameliorating oxidative stress, inflammation, and apoptosis in the PVN. This study provides evidence of the benefits of peripheral H2S therapy for hypertension.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。