Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats

使用散弹枪法宏基因组学和代谢组学评估草甘膦或农达 MON 52276 对 Sprague-Dawley 大鼠肠道菌群和血清代谢组的影响

阅读:5
作者:Robin Mesnage, Maxime Teixeira, Daniele Mandrioli, Laura Falcioni, Quinten Raymond Ducarmon, Romy Daniëlle Zwittink, Francesca Mazzacuva, Anna Caldwell, John Halket, Caroline Amiel, Jean-Michel Panoff, Fiorella Belpoggi, Michael Nicolas Antoniou

Background

There is intense debate on whether glyphosate can inhibit the shikimate pathway of gastrointestinal microorganisms, with potential health implications. Objectives: We tested whether glyphosate or its representative EU herbicide formulation Roundup MON 52276 affects the rat gut microbiome.

Discussion

Our study highlights the power of multi-omics approaches to investigate the toxic effects of pesticides. Multi-omics revealed that glyphosate and MON 52276 inhibited the shikimate pathway in the rat gut microbiome. Our findings could be used to develop biomarkers for epidemiological studies aimed at evaluating the effects of glyphosate herbicides on humans. https://doi.org/10.1289/EHP6990.

Methods

We combined cecal microbiome shotgun metagenomics with serum and cecum metabolomics to assess the effects of glyphosate [0.5, 50, 175mg/kgbody weight(BW)per day175mg/kgbody weight(BW)per day<math><mrow><mn>175</mn><mspace></mspace><mi>mg</mi><mo>/</mo><mi>kg</mi><mtext> body weight </mtext><mo>(</mo><mtext>BW</mtext><mo>)</mo><mtext> per day</mtext></mrow></math>] or MON 52276 at the same glyphosate-equivalent doses, in a 90-d toxicity test in rats.

Results

Glyphosate and MON 52276 treatment resulted in ceca accumulation of shikimic acid and 3-dehydroshikimic acid, suggesting inhibition of 5-enolpyruvylshikimate-3-phosphate synthase of the shikimate pathway in the gut microbiome. Cysteinylglycine, γ-glutamylglutamineγ-glutamylglutamine<math><mrow><mi>γ</mi><mtext>-glutamylglutamine</mtext></mrow></math>, and valylglycine levels were elevated in the cecal microbiome following glyphosate and MON 52276 treatments. Altered cecum metabolites were not differentially expressed in serum, suggesting that the glyphosate and MON 52276 impact on gut microbial metabolism had limited consequences on physiological biochemistry. Serum metabolites differentially expressed with glyphosate treatment were associated with nicotinamide, branched-chain amino acid, methionine, cysteine, and taurine metabolism, indicative of a response to oxidative stress. MON 52276 had similar, but more pronounced, effects than glyphosate on the serum metabolome. Shotgun metagenomics of the cecum showed that treatment with glyphosate and MON 52276 resulted in higher levels of Eggerthella spp., Shinella zoogleoides, Acinetobacter johnsonii, and Akkermansia muciniphila. Shinella zoogleoides was higher only with MON 52276 exposure. In vitro culture assays with Lacticaseibacillus rhamnosus strains showed that Roundup GT plus inhibited growth at concentrations at which MON 52276 and glyphosate had no effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。