Melatonin influences the biological characteristics of keloid fibroblasts through the Erk and Smad signalling pathways

褪黑素通过Erk和Smad信号通路影响瘢痕疙瘩成纤维细胞生物学特性

阅读:5
作者:Shaobin Huang, Wuguo Deng, Yunxian Dong, Zhicheng Hu, Yi Zhang, Peng Wang, Xiaoling Cao, Miao Chen, Pu Cheng, Hailin Xu, Wenkai Zhu, Bing Tang, Jiayuan Zhu

Background

Keloids are abnormal fibrous hyperplasias that are difficult to treat. Melatonin can be used to inhibit the development of certain fibrotic diseases but has never been used to treat keloids. We aimed to discover the effects and mechanisms of melatonin in keloid fibroblasts (KFs).

Conclusions

Collectively, melatonin may inhibit the Erk and Smad pathways through the membrane receptor MT2 to alter the cell functions of KFs, while combination with 5-FU could exert even more inhibitory effects in KFs through simultaneous suppression of multiple signalling pathways.

Methods

Flow cytometry, CCK-8 assays, western blotting, wound-healing assays, transwell assays, collagen gel contraction assays and immunofluorescence assays were applied to demonstrate the effects and mechanisms of melatonin in fibroblasts derived from normal skin, hypertrophic scars and keloids. The therapeutic potential of the combination of melatonin and 5-fluorouracil (5-FU) was investigated in KFs.

Results

Melatonin significantly promoted cell apoptosis and inhibited cell proliferation, migration and invasion, contractile capability and collagen production in KFs. Further mechanistic studies demonstrated that melatonin could inhibit the cAMP/PKA/Erk and Smad pathways through the membrane receptor MT2 to alter the biological characteristics of KFs. Moreover, the combination of melatonin and 5-FU remarkably promoted cell apoptosis and inhibited cell migration and invasion, contractile capability and collagen production in KFs. Furthermore, 5-FU suppressed the phosphorylation of Akt, mTOR, Smad3 and Erk, and melatonin in combination with 5-FU markedly suppressed the activation of the Akt, Erk and Smad pathways. Conclusions: Collectively, melatonin may inhibit the Erk and Smad pathways through the membrane receptor MT2 to alter the cell functions of KFs, while combination with 5-FU could exert even more inhibitory effects in KFs through simultaneous suppression of multiple signalling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。