Mitochondrial dysfunction in dopaminergic neurons differentiated from exfoliated deciduous tooth-derived pulp stem cells of a child with Rett syndrome

雷特综合征患儿脱落乳牙牙髓干细胞分化的多巴胺能神经元的线粒体功能障碍

阅读:5
作者:Saki Hirofuji, Yuta Hirofuji, Hiroki Kato, Keiji Masuda, Haruyoshi Yamaza, Hiroshi Sato, Fumiko Takayama, Michiko Torio, Yasunari Sakai, Shouichi Ohga, Tomoaki Taguchi, Kazuaki Nonaka

Abstract

Rett syndrome is an X-linked neurodevelopmental disorder associated with psychomotor impairments, autonomic dysfunctions and autism. Patients with Rett syndrome have loss-of-function mutations in MECP2, the gene encoding methyl-CpG-binding protein 2 (MeCP2). Abnormal biogenic amine signaling and mitochondrial function have been found in patients with Rett syndrome; however, few studies have analyzed the association between these factors. This study investigated the functional relationships between mitochondria and the neuronal differentiation of the MeCP2-deficient stem cells from the exfoliated deciduous teeth of a child with Rett syndrome. An enrolled subject in this study was a 5-year-old girl carrying a large deletion that included the methyl-CpG-binding domain, transcriptional repression domain, and nuclear localization signal of MECP2. Using the single-cell isolation technique, we found that the two populations of MeCP2-expressing and MeCP2-deficient stem cells kept their MECP2 expression profiles throughout the stages of cell proliferation and neuronal differentiation in vitro. Neurite outgrowth and branching were attenuated in MeCP2-deficient dopaminergic neurons. MeCP2-deficient cells showed reduced mitochondrial membrane potential, ATP production, restricted mitochondrial distribution in neurites, and lower expression of a central mitochondrial fission factor, dynamin-related protein 1 than MeCP2-expressing cells. These data indicated that MeCP2-deficiency dysregulates the expression of mitochondrial factors required for the maturation of dopaminergic neurons. This study also provides insight into the pathogenic mechanism underlying dysfunction of the intracerebral dopaminergic signaling pathway in Rett syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。