Transcriptomic profiling of nematode parasites surviving vaccine exposure

对疫苗接种后存活的线虫寄生虫进行转录组分析

阅读:3
作者:Guillaume Sallé ,Roz Laing ,James A Cotton ,Kirsty Maitland ,Axel Martinelli ,Nancy Holroyd ,Alan Tracey ,Matthew Berriman ,W David Smith ,George F J Newlands ,Eve Hanks ,Eileen Devaney ,Collette Britton

Abstract

Some nematode species are economically important parasites of livestock, while others are important human pathogens causing some of the most important neglected tropical diseases. In both humans and animals, anthelmintic drug administration is the main control strategy, but the emergence of drug-resistant worms has stimulated the development of alternative control approaches. Among these, vaccination is considered to be a sustainable and cost effective strategy. Currently, Barbervax® for the ruminant strongylid Haemonchus contortus is the only registered subunit vaccine for a nematode parasite, although a vaccine for the human hookworm Necator americanus is undergoing clinical trials (HOOKVAC consortium). As both these vaccines comprise a limited number of proteins, there is potential for selection of nematodes with altered sequences or expression of the vaccine antigens. Here we compared the transcriptome of H. contortus populations from sheep vaccinated with Barbervax® with worms from control animals. Barbervax® antigens are native integral membrane proteins isolated from the brush border of the intestinal cells of the adult parasite and many of those are proteases. Our findings provide no evidence for changes in expression of genes encoding Barbervax® antigens in the surviving parasite populations. However, surviving parasites from vaccinated animals showed increased expression of other proteases and regulators of lysosome trafficking, and displayed up-regulated lipid storage and defecation abilities that may have circumvented the effect of the vaccine. Implications for other potential vaccines for human and veterinary nematodes are discussed. Keywords: Barbervax; Haemonchus contortus; Nematode; Protease; Transcriptome; Vaccine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。