Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway

同型氧化的 HSPB1 通过激活 KEAP1/NRF2 信号通路保护 H9c2 细胞免受氧化应激

阅读:7
作者:Nian Wang, Xiehong Liu, Ke Liu, Kangkai Wang, Huali Zhang

Abstract

Several heat shock proteins are implicated in the endogenous cardioprotective mechanisms, but little is known about the role of heat shock protein beta-1 (HSPB1). This study aims to investigate the oxidation state and role of HSPB1 in cardiomyocytes undergoing oxidative stress and underlying mechanisms. Here, we demonstrate that hydrogen peroxide (H2O2) promotes the homo-oxidation of HSPB1. Cys137 residue of HSPB1 is not only required for it to protect cardiomyocytes against oxidative injury but also modulates its oxidation, phosphorylation at Ser15, and distribution to insoluble cell components after H2O2 treatment. Moreover, Cys137 residue is indispensable for HSPB1 to interact with KEAP1, thus regulating its oxidation and intracellular distribution, subsequently promoting the nuclear translocation of NRF2, and increasing the transcription of GLCM, HMOX1, and TXNRD1. Altogether, these findings provide evidence that Cys137 residue is indispensable for HSPB1 to maintain its redox state and antioxidant activity via activating KEAP1/NRF2 signaling cascade in cardiomyocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。